# ‘Seismic’ New Quantum Theory Says a Wavefunction is a Real Physical Object

Get the latest Waking Times articles delivered to your inbox. Sign up here.

*The wavefunction is a real physical object after all, say researchers.*

Eugenie Samuel Reich

**Nature**

At the heart of the weirdness for which the field of quantum mechanics is famous is the wavefunction, a powerful but mysterious entity that is used to determine the probabilities that quantum particles will have certain properties. Now, a preprint posted online on 14 November1 reopens the question of what the wavefunction represents — with an answer that could rock quantum theory to its core. Whereas many physicists have generally interpreted the wavefunction as a statistical tool that reflects our ignorance of the particles being measured, the authors of the latest paper argue that, instead, it is physically real.

“I don’t like to sound hyperbolic, but I think the word ‘seismic’ is likely to apply to this paper,” says Antony Valentini, a theoretical physicist specializing in quantum foundations at Clemson University in South Carolina.

Valentini believes that this result may be the most important general theorem relating to the foundations of quantum mechanics since Bell’s theorem, the 1964 result in which Northern Irish physicist John Stewart Bell proved that if quantum mechanics describes real entities, it has to include mysterious “action at a distance”.

Action at a distance occurs when pairs of quantum particles interact in such a way that they become entangled. But the new paper, by a trio of physicists led by Matthew Pusey at Imperial College London, presents a theorem showing that if a quantum wavefunction were purely a statistical tool, then even quantum states that are unconnected across space and time would be able to communicate with each other. As that seems very unlikely to be true, the researchers conclude that the wavefunction must be physically real after all.

David Wallace, a philosopher of physics at the University of Oxford, UK, says that the theorem is the most important result in the foundations of quantum mechanics that he has seen in his 15-year professional career. “This strips away obscurity and shows you can’t have an interpretation of a quantum state as probabilistic,” he says.

**Historical debate**

The debate over how to understand the wavefunction goes back to the 1920s. In the ‘Copenhagen interpretation’ pioneered by Danish physicist Niels Bohr, the wavefunction was considered a computational tool: it gave correct results when used to calculate the probability of particles having various properties, but physicists were encouraged not to look for a deeper explanation of what the wavefunction is.